Annex N

IPCC Reporting Tables

This annex contains a series of tables which summarize the emissions data discussed in the body of this report for the year 1997. The data in these tables conform with guidelines established by the IPCC (IPCC/UNEP/OECD/IEA 1997; vol. 1) for consistent international reporting of greenhouse gas emissions inventories. The format of these tables does not always correspond directly with the calculations discussed in the body of the report. In these instances, the data have been reorganized to conform to IPCC reporting guidelines. As a result, slight differences may exist between the figures presented in the IPCC tables and those in the body of the report. These differences are merely an artifact of variations in reporting structures; total U.S. emissions are unaffected.

Title of Inventory	Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-1997
Contact Name	Wiley Barbour
Title	Senior Analyst
Organisation	U.S. Environmental Protection Agency
Address	Climate Policy and Programs Division (2175)
	401 M Street, SW
	Washington, DC 20460
Phone	(202) 260-6972
Fax	(202) 260-6405
E-Mail	barbour.wiley@epa.gov
Is uncertainty addressed?	Yes
Related documents filed with IPCC	Yes

¹⁶ An additional table has been added (Table 2, sheet 3) that addresses emissions of HFCs and PFCs by individual gas. The standard IPCC reporting format for these gases is not sufficiently detailed. It was not possible to disaggregate by gas the emissions of halocarbons and SF₆ from certain source categories or portions of source categories. In these cases, aggregate Global Warming Potential weighted emissions are reported in million metric tons of carbon equivalents (MMTCE).

TABLE 1 SECTORAL REPORT FOR ENERGY (1997) (Sheet 1 of 3)

NATIONAL GREE	NHOUSE GA	AS INVENTO	RIES			
(Gg)						
CO ₂	CH ₄	N_2O	NOx	CO	NMVOC	SO ₂
5,390,398	10,025	256	20,352	65,493	8,217	17,258
5,415,400	NE	NE	NE	NE	NE	NE
5,375,164	633	256	20,248	65,163	7,730	16,909
1,951,908	24	27	5,605	368	46	11,868
1,951,908	24	27	5,605	368	46	11,868
IE	IE	IE	IE	IE	IE	IE
IE	IE	IE	IE	IE	IE	IE
1,125,447	151	18	2,967	1,007	197	3,053
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	
-	-	-	-	-	-	-
-	-	-	-	-	-	-
NA	NA	NA	NA	NA	NA	NA
	(Gg) CO2 5,390,398 5,415,400 5,375,164 1,951,908 1,951,908 IE IE 1,125,447	(Gg) CO2 CH4 5,390,398 10,025 5,415,400 NE 5,375,164 633 1,951,908 24 1,951,908 24 IE IE IE IE 1,125,447 151	(Gg) CO2 CH4 N2O 5,390,398 10,025 256 5,415,400 NE NE 5,375,164 633 256 1,951,908 24 27 1,951,908 24 27 IE IE IE IE IE IE IE 1,125,447 151 18	CO2 CH4 N2O NOx 5,390,398 10,025 256 20,352 5,415,400 NE NE NE 5,375,164 633 256 20,248 1,951,908 24 27 5,605 1E IE IE IE IE IE IE IE IE IE 1,125,447 151 18 2,967 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	CO2 CH4 N2O NOx CO 5,390,398 10,025 256 20,352 65,493 5,415,400 NE NE NE NE 5,375,164 633 256 20,248 65,163 1,951,908 24 27 5,605 368 1E IE IE IE IE IE IE IE IE IE IE IE 1,125,447 151 18 2,967 1,007 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	CO2 CH4 N2O NOx CO NMVOC 5,390,398 10,025 256 20,352 65,493 8,217 5,415,400 NE NE NE NE NE 5,375,164 633 256 20,248 65,163 7,730 1,951,908 24 27 5,605 368 46 1,951,908 24 27 5,605 368 46 IE IE

[a] Included under "Manufacturing Industries and Construction"
Note: Totals may not equal sum of components due to independent rounding.
- Value is included in an aggregate figure, but not estimated separately.
"0" (Estimate for source is insignificant or close to zero)
NA (Not applicable to source category)
NE (Not estimated)

NO (Not occurring in the United States)
IE (Estimated but included elsewhere)

TABLE 1 SECTORAL REPORT FOR ENERGY (1997) (Sheet 2 of 3)

	(Gg)						
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	CO ₂	CH ₄	N ₂ O	NOx	CO	NMVOC	SO_2
3 Transport	1,634,556	242.4	207.40	10,519	60,794	6,949	1,2!
a Civil Aviation	137,569	ΙE	ΙE	ΙE	ΙE	ΙE	
b Road Transportation	1,271,038	222.0	197.93	6,382	45,593	4,744	21
c Railways	32,371	ΙE	IE	IE	ΙE	IE	
d Navigation	56,402	ΙE	IE	IE	IE	IE	
e Miscellaneous Non-Highway	137,175	20.4	9.47	4,137	15,201	2,205	9
Pipeline Transport	IE	ΙE	ΙE	ΙE	ΙE	IE	
4 Other Sectors	616,927	215.2	4.13	1,157	2,994	538	7:
a Commercial/Institutional	238,591	24.2	0.88	379	235	22	
b Residential	378,335	191.0	3.25	779	2,759	515	
c Agriculture/Forestry/Fishing	IE	IE	ΙE	ΙE	ΙE	IE	
5 Other (U.S. Territories)	46,326	NE	NE	NE	NE	NE	ľ
Fugitive Emissions from Fuels	15,235	9,391.7	NE	104	330	488	3
1 Solid Fuels	NE	3,274.1	NE	NE	NE	NE	N
a Coal Mining	NE	3,274.1	NE	NE	NE	NE	1
b Solid Fuel Transformation	NE	IE	NE	NE	NE	NE	N
c Other (please specify)	NE	NE	NE	NE	NE	NE	N
2 Oil and Natural Gas	15,235	6,117.6	NE	104	330	488	3
a Oil	NE	270.7	NE	-	-	-	
b Natural Gas	NE	5,846.9	NE	-	-	-	
c Venting and Flaring	15,235	ΙE	NE	-	-	-	

TABLE 1 SECTORAL REPORT FOR ENERGY (1997) (Sheet 3 of 3)

<u>, , , , , , , , , , , , , , , , , , , </u>											
SECTORAL REPORT FOR NATIONAL GREENHOUSE GAS INVENTORIES											
(Gg)											
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	CO ₂	CH ₄	N ₂ O	NOx	CO	NMVOC	SO ₂				
Memo Items [a]											
International Bunkers	97,542	1.8	2.76	1,448	111	46	NE				
Aviation	50,974	1.4	1.62	202	84	13	NE				
Marine	46,568	0.4	1.15	1,246	27	33	NE				
CO ₂ Emissions from Biomass [b]	216,561										

[[]a] Not included in energy totals.

NO (Not occurring in the United States) IE (Estimated but included elsewhere)

 [[]a] Not included in energy totals.
 [b] CO₂ emission from biomass are estimated from energy production industries, industrial, transportation, residential, and commercial sectors. Estimates of non-CO₂ emissions are incorporated in sectoral estimates under heading A.1.
 Note: Totals may not equal sum of components due to independent rounding.
 - Value is included in an aggregate figure, but not estimated separately.
 "0" (Estimate for source is insignificant or close to zero)
 NA (Not applicable to source category)
 NE (Not estimated)

TABLE 2 SECTORAL REPORT FOR INDUSTRIAL PROCESSES (1997) (Sheet 1 of 3)

SECTORAL F	REPORT FO	R NATIO	NAL GREE	NHOUSE	GAS INVE	NTORIES							
			(Gg)										
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	CO ₂	CH ₄	N ₂ O	NOx	CO	NMVOC	SO ₂	HF	Cs	PF(Cs	SF ₆	[c]
								Р	Α	Р	Α	Р	Α
Total Industrial Processes	65,155	75.4	91.77	781	7,689	2,622	1,175	[a]	[a]	[a]	[a]	2.723	1.534
A Mineral Products	63,926	NE	NE	IE	ΙE	IE	IE	NE	NE	NE	NE	NE	NE
1 Cement Production	37,459	NE	NE	ΙE	IE	IE	IE	NE	NE	NE	NE	NE	NE
2 Lime Production	14,223	NE	NE	ΙE	IE	IE	IE	NE	NE	NE	NE	NE	NE
3 Limestone and Dolomite Use	7,810	NE	NE	ΙE	IE	IE	IE	NE	NE	NE	NE	NE	NE
4 Soda Ash Production and Use	4,434	NE	NE	ΙE	IE	IE	IE	NE	NE	NE	NE	NE	NE
5 Asphalt Roofing	NE	NE	NE	ΙE	IE	IE	IE	NE	NE	NE	NE	NE	NE
6 Road Paving with Asphalt	NE	NE	NE	ΙE	ΙE	IE	IE	NE	NE	NE	NE	NE	NE
7 Other	NE	NE	NE	ΙE	IE	IE	IE	NE	NE	NE	NE	NE	NE
Glass Production	NE	NE	NE	ΙE	ΙE	IE	ΙE	NE	NE	NE	NE	NE	NE
Concrete Pumice Stone	NE	NE	NE	ΙE	ΙE	IE	IE	NE	NE	NE	NE	NE	NE
B Chemical Industry	IE	75.4	91.77	151	1,168	415	273	NE	NE	NE	NE	NE	NE
1 Ammonia Production [b]	26,122	NE	NE	-	-	-	-	NE	NE	NE	NE	NE	NE
2 Nitric Acid Production	NO	NE	45.27	-	-	-	-	NE	NE	NE	NE	NE	NE
3 Adipic Acid Production	NO	NE	46.49	-	-	-	-	NE	NE	NE	NE	NE	NE
4 Carbide Production	NE	8.0	NE	-	-	-	-	NE	NE	NE	NE	NE	NE
5 Petrochemicals	NE	74.6	NE	-	-	-	-	NE	NE	NE	NE	NE	NE
C Metal Production	IE	NE	NE	93	2,237	66	501	NE	NE	[a]	[a]	0.460	0.460
1 Iron and Steel Production [b]	86,080	NE	NE	-	-	-	-	NE	NE	NE	NE	NE	NE
2 Ferroalloys Production [b]	1,789	NE	NE	-	-	-	-	NE	NE	NE	NE	NE	NE
3 Aluminum Production [b]	5,296	NE	NE	-	-	-	-	NE	NE	[a]	[a]	NE	NE
4 SF ₆ Used in Aluminum and Magnesium Foundries	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.460	0.460
5 Other	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N/

[[]a] Emissions of HFCs and PFCs are documented by gas in Table 2 Sheet 3.
[b] CO₂ emissions from ammonia, iron & steel production, ferroallyos production, and aluminum production are included in this table for informational purposes only. These estimates are not included in the national total, however, in order to prevent double counting. Emissions from these sources are included under non-energy use of fossil fuels in the IPCC Energy Sector.

[[]c] Totals for actual SF₆ exclude emissions from Semiconductor Manufacture, which are provided in Table 2 Sheet 3.

[&]quot;A" Actual emissions based on Tier 2 Approach.

[&]quot;P" Potential emissions based on Tier 1 Approach.

Note: Totals may not equal sum of components due to independent rounding.

⁻ Value is included in an aggregate figure, but not estimated separately.

[&]quot;0" (Estimate for source is insignificant or close to zero)

NA (Not applicable to source category)

NE (Not estimated)

NO (Not occurring in the United States)

IE (Estimated but included elsewhere)

TABLE 2 SECTORAL REPORT FOR INDUSTRIAL PROCESSES (1997) (Sheet 2 of 3)

(3) (3)													
SECTORAL REPO	RT FOR I			ENHOUS	SE GAS	INVENTORI	ES						
	_		(Gg)										
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	CO ₂	CH ₄	N_2O	NOx	CO	NMVOC	SO ₂	HF	Cs	PF	Cs	SF	6
								Р	Α	Р	Α	Р	Α
D Other Production	1,229	NE	NE	ΙE	ΙE	IE	ΙE	NA	NA	NA	NA	NA	NA
1 Pulp and Paper	NE	NE	NE	ΙE	ΙE	ΙE	ΙE	NA	NA	NA	NA	NA	NA
2 Food and Drink	NE	NE	NE	ΙE	ΙE	ΙE	ΙE	NA	NA	NA	NA	NA	NA
3 Carbon Dioxide	1,229	NE	NE	ΙE	ΙE	ΙE	ΙE	NA	NA	NA	NA	NA	NA
E Production of Halocarbons & SF ₆	NE	NE	NE	ΙE	ΙE	ΙE	ΙE	[a]	[a]	[a]	[a]	NE	NE
1 By-product Emissions	NE	NE	NE	ΙE	ΙE	ΙE	ΙE	NA	[a]	NE	NE	NE	NE
2 Fugitive Emissions	NE	NE	NE	ΙE	ΙE	ΙE	ΙE	NE	NE	NE	NE	NE	NE
3 Other	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F Consumption of Halocarbons & SF ₆	NA	NA	NA	NA	NA	NA	NA	[a]	[a]	[a]	[a]	2.263	1.074
Refrigeration and Air Conditioning Equipment	NA	NA	NA	NA	NA	NA	NA		-	-	-	NE	NE
2 Foam Blowing	NA	NA	NA	NA	NA	NA	NA		-	-	-	NE	NE
3 Fire Extinguishers	NA	NA	NA	NA	NA	NA	NA	-	-	-	-	NE	NE
4 Aerosols	NA	NA	NA	NA	NA	NA	NA		-	-	-	NE	NE
5 Solvents	NA	NA	NA	NA	NA	NA	NA		-	-	-	NE	NE
6 Electrical Transmission and Distribution	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.263	1.074
G Other	NA	NA	NA	538	4,285	2,141	401	NA	NA	NA	NA	NA	NA
Storage and Transport	NA	NA	NA	6	24	1,249	2	NA	NA	NA	NA	NA	NA
2 Other Industrial Processes	NA	NA	NA	382	601	416	387	NA	NA	NA	NA	NA	NA
3 Miscellaneous	NA	NA	NA	150	3,660	476	12	NA	NA	NA	NA	NA	NA

[[]a] Emissions of HFCs and PFCs are documented by gas in Table 2 Sheet 3. "A" Actual emissions based on Tier 2 Approach.

"P" Potential emissions based on Tier 2 Approach.

"P" Potential emissions based on Tier 1 Approach.

Note: Totals may not equal sum of components due to independent rounding.

- Value is included in an aggregate figure, but not estimated separately.

"0" (Estimate for source is insignificant or close to zero)

NA (Not applicable to source category)

NE (Not estimated)

NO (Not occurring in the United States)
IE (Estimated but included elsewhere)

TABLE 2 SECTORAL REPORT FOR INDUSTRIAL PROCESSES (1997) (Sheet 3 of 3)

			Se	ctoral Re	port for N	lational G	reenhous	se Gas Inver	ntories			
	(MM	TCE)					(G	g)				
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	Aggre-	Aggre-	HFC-	HFC-	HFC-	HFC-	HFC-	HFC-	CF ₄	C ₂ F ₆	C ₄ F ₁₀	C ₆ F ₁₄
	gate	gate	23	125	134a	143a	236fa	4310mee				
	Р	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
Total HFCs and PFCs	NA	NA	2.613	3.572	17.960	0.427	0.175	1.479	1.434	0.143	NE	NE
C 3 Aluminum Production	NA	[b]	NO	NO	NO	NO	NO	NO	1.434	0.143	NE	NE
D 4 Semiconductor Manufacture [a]	NA	1.3	ΙE	NO	NO	NO	NO	NO	ΙE	ΙE	NO	NO
E 1 By-Product Emissions (HCFC-22 Production)	NA	[b]	2.570	NO	NO	NO	NO	NO	NO	NO	NO	NO
F Consumption of Halocarbons & SF ₆	25.7	[b,c] 4.0	0.043	3.572	17.960	0.427	0.175	1.479	NE	NE	0.105	0.012
1 Refrigeration and Air Conditioning Equipment	-	-	-	-	-	-		-	NE	NE	-	-
2 Foam Blowing	-	-	-	-	-	-	-	-	NE	NE	-	-
3 Fire Extinguishers	-	-	-	-	-	-		•	NE	NE	-	-
4 Aerosols	-	-	-	-	-	-	•	-	NE	NE	-	-
5 Solvents	-	-	-	-	-	-	•	-	NE	NE	-	-

[&]quot;A" Actual emissions based on Tier 2 Approach.

Note: Totals may not equal sum of components due to independent rounding.

NA (Not applicable to source category)
NE (Not estimated)

NO (Not occurring in the United States)

IE (Estimated but included elsewhere)

[&]quot;P" Potential emissions based on Tier 1 Approach.

⁻ Value is included in an aggregate figure, but not estimated separately.

[[]a] Includes gases such as HFC-23, CF₄, C₂F₆, SF₆, C₃F₈, and NF₃.

[[]b] Does not include emissions where estimates for individual gases were available for reporting.
[c] Includes HFC-152a, HFC-227ea, and PFC/PFPEs. PFC/PFPEs are a proxy for many diverse PFCs and perfluoropolyethers (PFPEs) that are employed in solvent applications. The GWP and atmospheric lifetime of this aggregate category is based upon that of C₆F₁₄. "0" (Estimate for source is insignificant or close to zero)

TABLE 3 SECTORAL REPORT FOR SOLVENT AND OTHER PRODUCT USE (1997) (Sheet 1 of 1)

(611661 1 61 1)												
SECTORAL REPORT FOR NATIONAL GRI	EENHOUSE G	AS INVENTOR	RIES									
(Gg)												
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	NOx	CO	NMVOC	SO ₂								
Total Solvent and Other Product Use	3	6	5,882	1								
A Paint Application	2	1	2,713	0								
B Degreasing and Dry Cleaning	0	1	801	0								
C Chemical Products, Manufacture and Processing	IE	IE	IE	IE								
D Graphic Arts	1	0	373	0								
D Other Industrial	0	3	51	0								
D Nonindustrial	0	0	1,943	NA								

Note: Totals may not equal sum of components due to independent rounding.

- Value is included in an aggregate figure, but not estimated separately.

"0" (Estimate for source is insignificant or close to zero)

NA (Not applicable to source category)

NE (Not estimated)

NO (Not occurring in the United States)

IE (Estimated but included elsewhere)

TABLE 4 SECTORAL REPORT FOR AGRICULTURE (1997) (Sheet 1 of 2)

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	CH ₄	N ₂ O	NOx	CO	NMVOC
Total Agriculture	9,448.6	913.56	37	843	N
A Enteric Fermentation	5,962.6	NE	NE	NE	N
1 Cattle	5,691.6	NE	NE	NE	N
2 Buffalo	NE	NE	NE	NE	N
3 Sheep	88.0	NE	NE	NE	N
4 Goats	60.9	NE	NE	NE	N
5 Camels and Llamas	NE	NE	NE	NE	N
6 Horses	11.5	NE	NE	NE	N
7 Mules and Asses	NE	NE	NE	NE	N
8 Swine	110.7	NE	NE	NE	N
9 Poultry	NE	NE	NE	NE	N
10 Other	NA	NA	NA	NA	N
3 Manure Management	2,970.5	35.83	NE	NE	N
1 Cattle	1,023.0	15.40	NE	NE	N
2 Buffalo	NE	NE	NE	NE	ľ
3 Sheep	2.5	0.25	NE	NE	ľ
4 Goats	0.8	0.05	NE	NE	1
5 Camels and Llamas	NE	NE	NE	NE	1
6 Horses	31.3	0.61	NE	NE	1
7 Mules and Asses	NE	NE	NE	NE	ľ
8 Swine	1,605.2	0.79	NE	NE	1
9 Poultry	307.7	18.74	NE	NE	1
Note: Totals may not equal sum of components due to independent roundii Value is included in an aggregate figure, but not estimated separately. O" (Estimate for source is insignificant or close to zero) NA (Not applicable to source category) NE (Not estimated) NO (Not occurring in the United States) E (Estimated but included elsewhere)	ng.				

TABLE 4 SECTORAL REPORT FOR AGRICULTURE (1997) (Sheet 2 of 2)

(Silect 2 of 2)					
SECTORAL REPORT FOR NATIONAL (Gi		SE GAS INVE	ENTORIES		
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	CH ₄	N ₂ O	NOx	CO	NMVOC
B Manure Management (cont)					
10 Anaerobic	IE	ΙE	NE	NE	NE
11 Liquid Systems	IE	ΙE	NE	NE	NE
12 Solid Storage and Dry Lot	IE	ΙE	NE	NE	NE
13 Other	NA	NA	NA	NA	NA
C Rice Cultivation	475.4	NE	NE	NE	NE
1 Irrigated	475.4	NE	NE	NE	NE
2 Rainfed	NO	NO	NO	NO	NC
3 Deep Water	NO	NO	NO	NO	NC
4 Other	NA	NA	NA	NA	NA
D Agricultural Soils	NE	876.17	NE	NE	NE
E Prescribed Burning of Savannas	NO	NO	NO	NO	NC
F Field Burning of Agricultural Residues	40.1	1.56	37	843	NE
1 Cereals	29.1	0.70	16	610	NE
2 Pulse	10.1	0.85	20	212	NE
3 Tuber and Root	NE	NE	NE	NE	NE
4 Sugar Cane	1.0	0.02	0	20	NE
5 Other	NA	NA	NA	NA	N <i>A</i>
G Other	NA	NA	NA	NA	N <i>A</i>

Note: Totals may not equal sum of components due to independent rounding.

- Value is included in an aggregate figure, but not estimated separately.

"0" (Estimate for source is insignificant or close to zero)

NA (Not applicable to source category)

NE (Not estimated)

NO (Not occurring in the United States)
IE (Estimated but included elsewhere)

TABLE 5 SECTORAL REPORT FOR LAND-USE CHANGE AND FORESTRY (1997) (Sheet 1 of 1)

	ENHOUSE GAS II	NVENTORIES	•		
CO ₂ Emissions	CO ₂ Removals	CH ₄	N ₂ O	NOx	CO
[a] NA	[a] -764,683	NE	NE	NE	NE
[a] NA	[a] -764,683	NE	NE	NE	NE
NE	NE	NE	NE	NE	NE
NA	IE	NE	NE	NE	NE
NA	IE	NE	NE	NE	NE
NE	NE	NE	NE	NE	NE
NA	-627,917	NE	NE	NE	NE
NA	-65,523	NE	NE	NE	NE
NA	-71,243	NE	NE	NE	NE
[a] NE	[a] NE	NE	NE	NE	NE
NE	NE	NE	NE	NE	NE
NE	NE	NE	NE	NE	NE
NE	NE	NE	NE	NE	NE
NE	NE	NE	NE	NE	NE
NA	NA	NA	NA	NA	NA
[a] NE	[a] NE	NE	NE	NE	NE
NE	NE	NE	NE	NE	NE
NE	NE	NE	NE	NE	NE
NE	NE	NE	NE	NE	NE
NE	NE	NE	NE	NE	NE
NA	NA	NA	NA	NA	NA
[a] NE	[a] NE	NE	NE	NE	NE
NA	NA	NA	NA	NA	NA
	(Gg) CO2 Emissions [a] NA [a] NA NA NA NA NA NA NA NA NA NA	CO2 Emissions CO2 Removals [a]	CO2 Emissions CO2 Removals CH4 [a]	CO₂ Emissions CO₂ Removals CH₄ N₂O [a] NA [a] -764,683 NE NE [a] NA [a] -764,683 NE NE NE NE NE NE NE NA IE NE NE NE NA IE NE NE NE NA -627,917 NE NE NE NA -627,917 NE NE NE NA -655,523 NE NE NE NA NE NE NE NE NE NE N	CO₂ Emissions CO₂ Removals CH₄ N₂O NO₂ [a] NA [a] -764,683 NE NE NE [a] NA [a] -764,683 NE NE NE NE NE NE NE NE NE NA IE NE NE NE NE NA IE NE NE NE NE NE NA IE NE NE

[[]a] Please do not provide an estimate of both CO₂ emissions and CO₂ removals. You should estimate "net" emissions of CO₂ and place a single number in either the CO₂ emissions or CO₂ removals column, as appropriate. Please note that for the purposes of reporting, the signs for uptake are always (-) and for emissions (+).

Note: Totals may not equal sum of components due to independent rounding.

- Value is included in an aggregate figure, but not estimated separately.

"0" (Estimate for source is insignificant or close to zero)

NA (Not applicable to source category)

NE (Not estimated)

NO (Not occurring in the United States)
IE (Estimated but included elsewhere)

TABLE 6 SECTORAL REPORT FOR WASTE (1997) (Sheet 1 of 1)

(SHOCK FOFF)							
SECTORAL REP	ORT FOR NATION	onal Greeni	House gas in	VENTORIES			
		(Gg)					
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	CO ₂ [a]	CH ₄	N ₂ O	NOx	CO	NMVOC	SO ₂
Total Waste	IE	11,807.7	28.19	94	1,127	407	45
A Solid Waste Disposal on Land	IE	11,646.4	NE	1	2	21	0
1 Managed Waste Disposal on Land	IE	11,646.4	NE	1	2	21	0
2 Unmanaged Waste Disposal Sites	NE	NE	NE	NE	NE	NE	NE
3 Other	NA	NA	NA	NA	NA	NA	NA
B Wastewater Handling	NE	161.3	[b]	0	0	61	1
1 Industrial Wastewater	NE	NE	NE	0	0	12	0
2 Domestic and Commercial Wastewater	NE	161.3	[b]	0	0	49	0
3 Other	NA	NA	NA	NA	NA	NA	NA
C Waste Incineration	IE	NE	0.83	92	1,124	246	44
D Other	NE	NE	27.36	1	1	79	0
Transport, Storage, and Disposal Facility	NE	NE	NE	0	0	43	0
Other Waste	NE	NE	NE	1	1	36	0
Human sewage	NE	IE	27.36	NE	NE	NE	NE

[[]a] Note that CO₂ from waste disposal and incineration should only be included if it stems from non-biological or inorganic waste sources.

[b] Emissions from the human sewage portion of this source category is included under section D.

Note: Totals may not equal sum of components due to independent rounding.

- Value is included in an aggregate figure, but not estimated separately.

"0" (Estimate for source is insignificant or close to zero)

NA (Not applicable to source category)

NE (Not estimated)

NO (Not occurring in the United States)

IE (Estimated but included elsewhere)

TABLE 7A SUMMARY REPORT FOR NATIONAL GREENHOUSE GAS INVENTORIES (1997) (Sheet 1 of 3)

	SUMMARY REP	ORT FOR NA	TIONAL GF (Gg)	REENHOUS	SE GAS IN	VENTOR	IES							
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	CO ₂ Emissions	CO ₂ Removals	CH ₄	N ₂ O	NOx	СО	NMVOC	SO ₂	HF	Cs	PF(Cs	SF	·6
									Р	Α	Р	Α	Р	Α
Total National Emissions and Removals	5,455,553	-764,683	31,356.8	1,289.77	21,267	75,158	17,129	18,478	[a]	[a]	[a]	[a]	2.723	1.534
1 Energy	5,390,398	NA	10,025.1	256.24	20,352	65,493	8,217	17,258						
A Fuel Combustion (Sectoral Approach)	5,375,164	NA	633.4	256.24	20,248	65,163	7,730	16,909						
1 Energy Industries	1,951,908	NA	24.4	26.79	5,605	368	46	11,868						
2 Manufacturing Industries & Construction	1,125,447	NA	151.4	17.92	2,967	1,007	197	3,053						
3 Transport	1,634,556	NA	242.4	207.40	10,519	60,794	6,949	1,252						
4 Other Sectors	616,927	NA	215.2	4.13	1,157	2,994	538	737						
5 Other (U.S. Territories)	46,326	NA	NE	NE	NE	NE	NE	NE						
B Fugitive Emissions from Fuels	15,235	NA	9,391.7		104	330	488	349						
1 Solid Fuels	NE	NA	3,274.1											
2 Oil and Natural Gas	15,235	NA	6,117.6		104	330	488	349						
2 Industrial Processes	65,155	NA	75.4	91.77	781	7,689	2,622	1,175	[a]	[a]	[a]	[a]	2.723	1.534
A Mineral Products	63,926	NA	NE	NE	ΙE	ΙE	ΙE	ΙE	NE	NE	NE	NE	NE	NE
B Chemical Industry	IE	NA	75.4	91.77	151	1,168	415	273	NE	NE	NE	NE	NE	NE
C Metal Production	IE	NA	NE	NE	93	2,237	66	501	NE	NE	[a]	[a]	0.460	0.460
D Other Production	1,229	NA	NE	NE	ΙE	IE	ΙE	ΙE	NA	NA	NA	NA	NA	NA
E Production of Halocarbons and SF ₆	NE	NA	NE	NE	ΙE	ΙE	ΙE	ΙE	[a]	[a]	NE	NE	NE	NE
F Consumption of Halocarbons and SF ₆	NA	NA	NA	NA	NA	NA	NA	NA	[a]	[a]	[a]	[a]	2.263	1.074
G Storage/Other/Miscellaneous	NA	NA	NA	NA	538	4,285	2,141	401	NA	NA	NA	NA	NA	NA

[a] Emissions of HFCs and PFCs are documented by gas in Table 2 Sheet 3.
"A" Actual emissions based on Tier 2 Approach.
"P" Potential emissions based on Tier 1 Approach.

Note: Totals emissions based on Fier Lapproach.

Note: Totals may not equal sum of components due to independent rounding.

- Value is included in an aggregate figure, but not estimated separately.

"0" (Estimate for source is insignificant or close to zero)

NA (Not applicable to source category)

NE (Not estimated)

NO (Not occurring in the United States)

IE (Estimated but included elsewhere)

TABLE 7A SUMMARY REPORT FOR NATIONAL GREENHOUSE GAS INVENTORIES (1997) (Sheet 2 of 3)

(Sheet 2 of 3)														
SUMMARY REPORT FOR NATIONAL GREENHOUSE GAS INVENTORIES (Gg)														
GREENHOUSE GAS SOURCE AND SINK CO ₂ CO ₂ CH ₄ N ₂ O NO _x CO NMVOC SO ₂ HFCs PFCs SF ₆														
	· · · -		CH ₄	N ₂ O	NOx	CO	NMVOC	SO_2	HF	Cs	PFC	s	SF	6
CATEGORIES	Emissions	Removals										_		
									Р	Α	Р	Α	Р	A
3 Solvent and Other Product Use	NE	NE	NE	NE	3	6	5,882	1						
4 Agriculture	NE	NE	9,448.6	913.56	37	843	NE	NE						
A Enteric Fermentation	NE	NE	5,962.6	NE	NE	NE	NE	NE						
B Manure Management	NE	NE	2,970.5	35.83	NE	NE	NE	NE						
C Rice Cultivation	NE	NE	475.4	NE	NE	NE	NE	NE						
D Agricultural Soils	[a] NE	[a] NE	NE	876.17	NE	NE	NE	NE						
E Prescribed Burning of Savannas	NO	NO	NO	NO	NO	NO	NO	NO						
F Field Burning of Agricultural Residues	NE	NE	40.1	1.56	37	843	NE	NE						
G Other	NA	NA	NA	NA	NA	NA	NA	NA						
5 Land-Use Change & Forestry	[a] NA	[a] -764,683	NE	NE	NE	NE	NE	NE						
A Changes in Forest and Other Woody Biomass Stocks	[a] NA	[a] -764,683	NE	NE	NE	NE	NE	NE						
B Forest and Grassland Conversion	[a] NE	[a] NE	NE	NE	NE	NE	NE	NE						
C Abandonment of Managed Lands	[a] NE	[a] NE	NE	NE	NE	NE	NE	NE						
D CO ₂ Emissions and Removals from Soil	[a] NE	[a] NE	NE	NE	NE	NE	NE	NE						
E Other	NA	NA	NA	NA	NA	NA	NE	NE						
6 Waste	IE	IE	11,807.7	28.19	94	1,127	407	45						
A Solid Waste Disposal on Land	IE	IE	11,646.4	NE	1	2	21	0						
B Wastewater Handling	NE	NE	161.3	[b]	0	0	61	1						
C Waste Incineration	IE	NE	NE	0.83	92	1,124	246	44						
D Other	NE	NE	NE	27.36	1	1	79	0						
7 Other	NA	NA	NA	NA	NA	NA	NA	NA						

[[]a] Please do not provide an estimate of both CO₂ emissions and CO₂ removals. You should estimate "net" emissions of CO₂ and place a single number in either the CO₂ emissions

or CO₂ removals column, as appropriate. Please note that for the purposes of reporting, the signs for uptake are always (-) and for emissions (+).

[b] Emissions from the human sewage portion of this source category is included under section 6.D.

Note: Totals may not equal sum of components due to independent rounding.

- Value is included in an aggregate figure, but not estimated separately.

"O" (Estimate for source is insignificant or close to zero)

NA (Not applicable to source category)

NE (Not estimated)

NO (Not occurring in the United States)

IE (Estimated but included elsewhere)

TABLE 7A SUMMARY REPORT FOR NATIONAL GREENHOUSE GAS INVENTORIES (1997) (Sheet 3 of 3)

(311661 3 01 3)																											
SUMMARY REPORT FOR NATIONAL GREENHOUSE GAS INVENTORIES																											
(Gg)																											
GREENHOUSE GAS SOURCE AND SINK CO2 CO2 CH4 N2O NOx CO NMVOC SO2 HFCS PFCS SF6 CATEGORIES Emissions Removals																											
P A P A P A																											
Memo Items [a]																											
International Bunkers	97,542	NE	1.8	2.76	1,448	111	46	NE																			
Aviation	50,974	NE	1.4	1.62	202	84	13	NE																			
Marine	46,568	NE	0.4	1.15	1,246	27	33	NE																			
CO ₂ Emissions from Biomass	216,561																										

[a] Not included in totals.

Not included in totals.

Note: Totals may not equal sum of components due to independent rounding.

- Value is included in an aggregate figure, but not estimated separately.

"0" (Estimate for source is insignificant or close to zero)

NA (Not applicable to source category)

NE (Not estimated)

NO (Not occurring in the United States)

IE (Estimated but included elsewhere)

TABLE 7B SHORT SUMMARY REPORT FOR NATIONAL GREENHOUSE GAS INVENTORIES (1997) (Sheet 1 of 1)

(611661 1 61 1)															
		SHORT SUM	MARY REPORT			NHOUSE	GAS IN	/ENTORIES							
CDEENHOUSE	E GAS SOURCE AND SINK	00	CO	CH₄	ig) N.O.	NOx	CO	NMVOC	CO.	HF	Co	PF	Co	SF	
	CATEGORIES	CO ₂ Emissions	CO ₂ Removals	СП4	N₂O	NUx	CU	NIVIVOC	SO ₂	ПГ	CS	PF	C2) I	-6
										Р	Α	Р	Α	Р	Α
Total National Emi	issions and Removals	5,455,553	-764,683	31,356.8	1,289.77	21,267	75,158	17,129	18,478	[a]	[a]	[a]	[a]	2.723	1.534
1 Energy	Reference Approach [b]	5,415,400													
	Sectoral Approach [b]	5,390,398	NA	10,025.1	256.24	20,352	65,493	8,217	17,258						
A Fuel Comb	bustion	5,375,164	NA	633.4	256.24	20,248	65,163	7,730	16,909						
B Fugitive Er	missions from Fuels	15,235	NA	9,391.7		104	330	488	349						
2 Industrial Proce	esses	65,155	NA	75.4	91.77	781	7,689	2,622	1,175	[a]	[a]	[a]	[a]	2.723	1.534
3 Solvent and Oth	her Product Use	NE	NE	NE	NE	3	6	5,882	1						
4 Agriculture		NE	NE	9,448.6	913.56	37	843	NE	NE						
5 Land-Use Chang	ge & Forestry	[c] NA	[c] -764,683	NE	NE	NE	NE	NE	NE						
6 Waste		IE	IE	11,807.7	28.19	94	1,127	407	45						
7 Other		NA	NA	NA	NA	NA	NA	NA	NA						
Memo Items:															
International Bunk	kers	97,542	NE	1.8	2.76	1,448	111	46	NE						
Aviation		50,974	NE	1.4	1.62	202	84	13	NE	Ī			Ī		
Marine		46,568	NE	0.4	1.15	1,246	27	33	NE						
CO ₂ Emissions fro	om Biomass	216,561													
	1050 1 11					-				-			-		

[[]a] Emissions of HFCs and PFCs are documented by gas in Table 2 Sheet 3.

[[]b] For verification purposes, countries are asked to report the results of their calculations using the Reference Approach and explain any differences with the Sectoral Approach. Do not include the results of both the Reference Approach and the Sectoral Approach in national totals.

[[]c] Please do not provide an estimate of both CO₂ emissions and CO₂ removals. You should estimate "net" emissions of CO₂ and place a single number in either the CO₂ emissions

or CO₂ removals column, as appropriate. Please note that for the purposes of reporting, the signs for uptake are always (-) and for emissions (+). Note: Totals may not equal sum of components due to independent rounding.

⁻ Value is included in an aggregate figure, but not estimated separately.
"0" (Estimate for source is insignificant or close to zero)

NA (Not applicable to source category)

NE (Not estimated)

NO (Not occurring in the United States)

IE (Estimated but included elsewhere)

TABLE 8A OVERVIEW TABLE FOR NATIONAL GREENHOUSE GAS INVENTORIES (1997) (Sheet 1 of 6)

OVERVIEW TABLE														
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	CO ₂		CH ₄		N ₂ O)	NC) _x	C()	NMV	OC	SC)2
	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality
Total National Emissions and Removals														
1 Energy														
A Fuel Combustion Activities														
Reference Approach	ALL	Н												
Sectoral Approach	ALL	Н	ALL	M	ALL	L	ALL	M	ALL	M	ALL	L	ALL	M
1 Energy Industries	ALL	Н	ALL	M	ALL	L	ALL	M	ALL	M	ALL	L	ALL	M
Manufacturing Industries & Construction	ALL	Н	ALL	М	ALL	L	ALL	М	ALL	M	ALL	L	ALL	M
3 Transport	ALL	Н	ALL	M	PART	L	ALL	Н	ALL	Н	ALL	L	ALL	M
4 Other Sectors	ALL	Н	ALL	L	ALL	L	ALL	M	ALL	M	ALL	L	IE	
5 Other (U.S. Territories)	ALL	M	NE		NE		NE		NE		NE		NE	
B Fugitive Emissions from Fuels														
1 Solid Fuels	NE		PART [b]	M	NE		NE		NE		NE		NE	
2 Oil and Natural Gas	PART [a]	M	ALL	L	NE		ALL	M	ALL	M	ALL	L	ALL	M
2 Industrial Processes														
A Mineral Products	ALL	Н	NE		NE		IE		IE		IE		IE	
B Chemical Industry	ALL	M	PART [c]	M	ALL	Н	ALL	M	ALL	M	ALL	M	ALL	M
C Metal Production	IE		NE		NE		ALL	M	ALL	M	ALL	M	ALL	M
D Other Production	NA		NA		NA		IE		IE		IE		IE	
E Production of Halocarbons & SF ₆	NO		NO		NO		IE		IE	<u> </u>	IE		IE	<u> </u>

"0" (Estimate for source is insignificant or close to zero)

NA (Not applicable to source category)

NE (Not estimated)

NO (Not occurring in the United States)

IE (Estimated but included elsewhere)

PART (Partly estimated)

ALL (Full estimate of all possible sources)
[a] Estimate excludes geologic carbon dioxide deposits released during petroleum and natural gas production.

Quality:

H = High Confidence in Estimation

L = Low Confidence in Estimation

M = Medium Confidence in Estimation

[b] Does not include abandoned coal mines.

[c] Not all potential sources were included. See sources excluded annex.

[d] Only HCFC-22 production included.

Disaggregation:

1 = Total emissions estimated

2 = Sectoral split

3 = Subsectoral split

Documentation:

H = High (all background information included)

M = Medium (some background information included)

TABLE 8A OVERVIEW TABLE FOR NATIONAL GREENHOUSE GAS INVENTORIES (1997) (Sheet 2 of 6)

	OV	ERVIEW	TABLE					
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	HFC:	S	PFC	S	SF	6	Documen- tation	Disaggre- gation
	Estimate	Quality	Estimate	Quality	Estimate	Quality		
Total National Emissions								
and Removals								
1 Energy								
A Fuel Combustion Activities								
Reference Approach							Η	1
Sectoral Approach	NO		NO		NO		Н	3
1 Energy Industries	NO		NO		NO		Н	1
2 Manufacturing Industries	NO		NO		NO		Н	1
& Construction								
3 Transport	NO		NO		NO		Н	2
4 Other Sectors	NO		NO		NO		Н	1
5 Other (U.S. Territories)	NO		NO		NO		Н	1
B Fugitive Emissions from Fuels								
1 Solid Fuels	NO		NO		NO		Н	3
2 Oil and Natural Gas	NO		NO		NO		Н	3
2 Industrial Processes								
A Mineral Products	NE		NE		NE		Н	3
B Chemical Industry	NE		NE		NE		Н	3
C Metal Production	NE		ALL	Н	ALL	М	М	3
D Other Production	NA		NA		NA			
E Production of Halocarbons & SF ₆	PART [d]	Н	NE		NE		M	2

Quality:

M = Medium Confidence in Estimation

L = Low Confidence in Estimation

"0" (Estimate for source is insignificant or close to zero)

NA (Not applicable to source category)

NE (Not estimated)

NO (Not occurring in the United States)

IE (Estimated but included elsewhere)

PART (Partly estimated)

ALL (Full estimate of all possible sources)
[a] Estimate excludes geologic carbon dioxide deposits released during petroleum and natural gas production.

[b] Does not include abandoned coal mines.

[c] Not all potential sources were included. See sources excluded annex.

[d] Only HCFC-22 production included.

Disaggregation: H = High Confidence in Estimation

1 = Total emissions estimated

2 = Sectoral split

3 = Subsectoral split

Documentation:

H = High (all background information included)

M = Medium (some background information included)

TABLE 8A OVERVIEW TABLE FOR NATIONAL GREENHOUSE GAS INVENTORIES (1997) (Sheet 3 of 6)

				OVE	RVIEW TAE	BLE								
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	CO ₂	!	СН	4	N ₂ C)	NO	х	CC)	NMV	OC	S0	2
	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality
Industrial Processes (cont)														
F Consumption of Halocarbons & SF ₆														
Potential [a]	NA		NA		NA		NA		NA		NA		NA	
Actual [b]	NA		NA		NA		NA		NA		NA		NA	
G Storage/Other/Miscellaneous	NA		NA		NA		ALL	M	ALL	M	ALL	L	ALL	N
3 Solvent and Other Product Use	NE		NE		NE		ALL	M	ALL	М	ALL	Μ	ALL	N
4 Agriculture														
A Enteric Fermentation	NE		ALL	М	NE		NE		NE		NE		NE	
B Manure Management	NE		ALL	М	ALL	L	NE		NE		NE		NE	
C Rice Cultivation	NE		ALL	L	NE		NE		NE		NE		NE	
D Agricultural Soils	NE		NE		ALL	L	NE		NE		NE		NE	
E Prescribed Burning of Savannas	NO		NO		NO		NO		NO		NO		NO	
F Field Burning of Agricultural Residues	NE		ALL	L	ALL	L	ALL	L	ALL	L	NE		NE	
G Other	NA		NA		NA		NA		NA		NA		NA	
5 Land-Use Change & Forestry														
A Changes in Forest and Other Woody Biomass Stocks	PART [c]	M	NE		NE		NE		NE		NE		NE	
B Forest and Grassland Conversion	NE		NE		NE		NE		NE		NE		NE	

"0" (Estimate for source is insignificant or close to zero)
NA (Not applicable to source category)
NE (Not estimated)

NO (Not occurring in the United States)
IE (Estimated but included elsewhere)

PART (Partly estimated)

ALL (Full estimate of all possible sources)
[a] Potential emissions based on Tier 1 Approach.

[b] Actual emissions based on Tier 2 Approach.

[c] Estimate does not include Alaska, Hawaii, or U.S. Territories.

H = High Confidence in Estimation

M = Medium Confidence in Estimation

L = Low Confidence in Estimation

Disaggregation:

1 = Total emissions estimated

2 = Sectoral split

3 = Subsectoral split

Documentation:

H = High (all background information included)

M = Medium (some background information included)

TABLE 8A OVERVIEW TABLE FOR NATIONAL GREENHOUSE GAS INVENTORIES (1997) (Sheet 4 of 6)

	51 4 01 0)	0	VERVIEW	/ TABLE					
	IHOUSE GAS SOURCE NK CATEGORIES	HFO	Cs	PFC	Cs	SF	6	Documen- tation	Disaggre- gation
		Estimate	Quality	Estimate	Quality	Estimate	Quality		
Industr	ial Processes (cont)								
F	Consumption of Halocarbons & SF ₆								
	Potential [a]	ALL	M	ALL	M	ALL	М	M	2
	Actual [b]	ALL	M	ALL	M	ALL	М	M	2
G	Storage/Other/Miscellaneous	NA		NA		NA		М	2
3 So	lvent and Other	NA		NA		NA		M	3
Pro	oduct Use								
4 Ag	riculture								
Α	Enteric Fermentation	NA		NA		NA		Н	3
В	Manure Management	NA		NA		NA		Н	3
С	Rice Cultivation	NA		NA		NA		H	3
D	Agricultural Soils	NA		NA		NA		Н	3
E	Prescribed Burning of Savannas	NA		NA		NA			
F	Field Burning of Agricultural Residues	NA		NO		NO		Н	3
G	Other	NA		NA		NA			
5 La	nd-Use Change &								
	restry								
Α	Changes in Forest and Other Woody Biomass Stocks	NA		NA		NA		М	2
В	Forest and Grassland Conversion	NA		NA		NA			

"0" (Estimate for source is insignificant or close to zero)
NA (Not applicable to source category)
NE (Not estimated)

NO (Not occurring in the United States)
IE (Estimated but included elsewhere)

PART (Partly estimated)

ALL (Full estimate of all possible sources)
[a] Potential emissions based on Tier 1 Approach.

[b] Actual emissions based on Tier 2 Approach.

[c] Estimate does not include Alaska, Hawaii, or U.S. Territories.

H = High Confidence in Estimation

M = Medium Confidence in Estimation

L = Low Confidence in Estimation

Disaggregation:

1 = Total emissions estimated

2 = Sectoral split

3 = Subsectoral split

Documentation:

H = High (all background information included)

M = Medium (some background information included)

TABLE 8A OVERVIEW TABLE FOR NATIONAL GREENHOUSE GAS INVENTORIES (1997) (Sheet 5 of 6)

OVERVIEW TABLE GREENHOUSE GAS SOURCE CO2 CH4 N2O NOx CO NMVOC SO2														
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	CO	2	CH ₄		N ₂ O		NC) _x	C)	NMV	OC	SC)2
	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality
5 Land-Use Change & Forestry (cont)														
C Abandonment of Managed Lands	NE		NE		NE		NE		NE		NE		NE	
D CO ₂ Emissions and Removals from Soil	PART [a]	L	NE		NE		NE		NE		NE		NE	
E Other	NA		NA		NA		NA		NA		NA		NA	
6 Waste														
A Solid Waste Disposal on Land	IE		ALL	М	NE		ALL	L	ALL	L	ALL	L	ALL	l
B Wastewater Handling	NE		PART [b]	L	PART [c]	L	ALL	L	ALL	L	ALL	L	ALL	
C Waste Incineration	IE		NE		ALL	L	ALL	L	ALL	L	ALL	L	ALL	
D Other	NE		NE		ALL	L	ALL	L	ALL	L	ALL	L	ALL	
7 Other	NA		NA		NA		NA		NA		NA		NA	
Memo Items:														
International Bunkers														
Aviation	ALL	М	NE		NE		IE		IE		IE		IE	
Marine	ALL	M	NE		NE	•	IE		IE		IE		IE	
CO ₂ Emissions from Biomass	ALL	M												

"0" (Estimate for source is insignificant or close to zero)
NA (Not applicable to source category)
NE (Not estimated)

NO (Not occurring in the United States)
IE (Estimated but included elsewhere)
PART (Partly estimated)
ALL (Full estimate of all possible sources)

- [a] Non-forest soils are not included in this estimate.
- [b] Estimate does not include emissions from industrial wastewater.
- [c] Includes emissions from human sewage only

H = High Confidence in Estimation M = Medium Confidence in Estimation

L = Low Confidence in Estimation

Disaggregation: 1 = Total emissions estimated

2 = Sectoral split

3 = Subsectoral split

Documentation:

H = High (all background information included)

M = Medium (some background information included)

TABLE 8A OVERVIEW TABLE FOR NATIONAL GREENHOUSE GAS INVENTORIES (1997) (Sheet 6 of 6)

OVERVIEW TABLE GREENHOUSE GAS SOURCE HFCS PFCS SF6 Documen- Disaggre-														
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	HF	Cs	PF(Cs	SF	6	Documen- tation	Disaggre- gation						
	Estimate	Quality	Estimate	Quality	Estimate	Quality								
5 Land-Use Change & Forestry (cont)														
C Abandonment of Managed Lands	NA		NA		NA									
D CO ₂ Emissions and Removals from Soil	NA		NA		NA		Н	2						
E Other	NA		NA		NA									
6 Waste														
A Solid Waste Disposal on Land	NO		NO		NO		Н	2						
B Wastewater Handling	NO		NO		NO		Н	2						
C Waste Incineration	NO		NO		NO		Н	1						
D Other	NO		NO		NO		Н	1						
7 Other	NA		NA		NA									
Memo Items:														
International Bunkers														
Aviation	NO		NO		NO		Н	1						
Marine	NO		NO		NO		Н	1						
CO ₂ Emissions from Biomass							Η	2						

"0" (Estimate for source is insignificant or close to zero) NA (Not applicable to source category) NE (Not estimated)

NO (Not occurring in the United States) IE (Estimated but included elsewhere)

PART (Partly estimated)

ALL (Full estimate of all possible sources)

- [a] Non-forest soils are not included in this estimate.
- [b] Estimate does not include emissions from industrial wastewater.
- [c] Includes emissions from human sewage only

H = High Confidence in Estimation

M = Medium Confidence in Estimation

L = Low Confidence in Estimation

Disaggregation: 1 = Total emissions estimated

2 = Sectoral split

3 = Subsectoral split

Documentation:

H = High (all background information included)
M = Medium (some background information included)